Why Use Sobolev Metrics on the Space of Curves

نویسندگان

  • Martin Bauer
  • Peter W. Michor
چکیده

In this chapter we study reparametrization invariant Sobolev metrics on spaces of regular curves. We discuss their completeness properties and the resulting usability for applications in shape analysis. In particular, we will argue, that the development of efficient numerical methods for higher order Sobolev type metrics is an extremely desirable goal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic Completeness for Sobolev Metrics on the Space of Immersed Plane Curves

We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as for initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find low...

متن کامل

An Overview of the Riemannian Metrics on Spaces of Curves Using the Hamiltonian Approach

Here shape space is either the manifold of simple closed smooth unparameterized curves in R or is the orbifold of immersions from S to R modulo the group of diffeomorphisms of S. We investige several Riemannian metrics on shape space: L-metrics weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which is sandwiched between two le...

متن کامل

Constructing Reparameterization Invariant Metrics on Spaces of Plane Curves

Metrics on shape spaces are used to describe deformations that take one shape to another, and to define a distance between shapes. We study a family of metrics on the space of curves, which includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metr...

متن کامل

Constructing reparametrization invariant metrics on spaces of plane curves

Metrics on shape space are used to describe deformations that take one shape to another, and to determine a distance between them. We study a family of metrics on the space of curves, that includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metri...

متن کامل

Properties of Sobolev–type metrics in the space of curves

We define a manifold M where objects c ∈ M are curves, which we parameterize as c : S → lR (n ≥ 2, S is the circle). We study geometries on the manifold of curves, provided by Sobolev–type Riemannian metrics H . These metrics have been shown to regularize gradient flows used in Computer Vision applications, see [13, 16] and references therein. We provide some basic results of H metrics; and, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015